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Critical behavior of ionic liquids
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The renormalization of the Landau-Ginzburg Hamiltonian for a system with Coulombic interactions caused
by spatially inhomogeneous polarizational effects is discussed. It is shown that for ionic liquids with a strong
dependence of the degree of dissociation on density, the nonclassical fluctuation region is significantly nar-
rowed. The essential role of the association of ions is noted.
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INTRODUCTION

Critical phenomena in fluids with nondispersive Coulo
bic interactions have attracted much attention in the last
cade owing to a diversity of experimental results~see@1–3#!.
The variety of systems studied experimentally can be divi
into two groups.

Pure ionic fluids such as molten salts NaCl, KCl, e
form the first group. The liquid-vapor critical point of thes
systems is located at very high temperatures (Tc.103 K).
This makes the experiments very difficult. From this point
view the ionic~quasi! binary mixtures with low critical tem-
peratures (Tc.300 K) of decomposition used in the expe
ments by Pitzer and co-workers are more suitable@1,2,4,5#.
The basic model for these systems is the restricted primi
model ~RPM!. The latter is the system of equal number
positive and negative charges, immersed in a structure
solvent of dielectric permittivitye. Various theoretical ap-
proximations and numerical simulations predict the liqu
vapor critical point at very low dimensionless temperatu
and densities@6–8#. The nature of critical fluctuations in thi
model has not been studied much. The main difficulty her
the interaction between number density and charge fluc
tions.

The renormalization-group analysis of this problem ba
on the theoretical field analog of the RPM taking into a
count hard-core repulsion was done in@9#. It was shown that
the investigated model may exhibit either a first-order tr
sition or Ising-like critical behavior depending on the starti
values of the coefficients of the Landau-Ginzburg Ham
tonian ~LGH!. According to the study of Ref.@9# these two
types are formed due to the existence of a tricritical surf
in the space of the coefficients of the Hamiltonian. But t
estimate for the width of the fluctuational region was n
given. In addition, the value of the coefficient in thef6 term
is chosen without any physical grounds, although as w
noted all the coefficients atfn,n,22 in the LGH obtained
are negative.

The possibility of the tricritical nature of observed pec
liarities was also discussed in@6,10#. For such a conjecture to
be valid the additional scale competitive with the correlat
length of an order parameter must exist@6#. For example, in
polymer blends the apparent second scale is the size
molecule@11#, which may lead to the crossover. The physic
meaning of its analog, if there exists one, for an electrol
solution is not clear@12#.

Analogous problems arise for the second group which
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cludes dilute solutions of electrolytes, such as aqueous e
trolytes (H2O1NaCl etc.! @13,14#, and quasibinary solutions
@12#. Here the admixture of ions changes the parameter
the critical point of a pure solvent. Thus the critical behav
of a pure solvent is perturbed by the Coulombic subsys
of ions. The critical behavior of these systems may exhib
crossover from mean-field to Ising-like asymptotics with
the temperature interval of an experiment. In particular,
perimental data for some solutions were fitted with a me
field exponential law up tot'1024 @3#, i.e., the fluctuation
region is much less in comparison with that for simple li
uids (Gi'0.121).

To process such data, the different assumptions in@15,16#
and @17# were considered. These affected the conclusi
about the existence of the crossover in such systems.
results of@17# show the nonclassical behavior through t
temperature interval without any crossover. In@15,16# the
experimental data were fitted by a classical equation of s
~EOS!.

In @18# it was shown that accounting for the fluctuatio
of dielectric permittivity of a solvent is very important fo
constructing the proper LGH and Ginzburg criteria for t
analysis of the influence of the Coulombic subsystem
critical behavior of a solvent. In particular, the ‘‘square roo
concentration dependence for the shift of the critical po
locus for small concentrations observed in@14# was ex-
plained.

In this work we investigate the influence of inhomog
neous polarizational effects on the criticality of ionic liquid
The charge-density coupling in these systems arises owin
the fluctuations of dielectric permittivity caused by the flu
tuations of density. The part of the dielectric permittivity
ionic fluid which depends on density is formed mainly by t
polarizability of ionic cores and neutral ionic pairs. Takin
account of the local dependence of this part of dielec
permittivity leads to fluctuations of local electrostatic ener
in the regions with characteristic size of the density-dens
correlation length. These charge fluctuations effectiv
renormalize the coefficients of the LGH of a system. In pr
ciple, the rigorous solution of the RPM should include the
effects. However in the absence of the exact solution,
polarization effects can be taken into account with the h
of the effective LGH.

I. CHARGE FLUCTUATIONS IN A SYSTEM

We consider a system of charged particles with char
Z1 ,Z2 , massesm1 ,m2 , and diametersa1'a25a. The
©2002 The American Physical Society06-1
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global electroneutrality condition

Z1N12Z2N250 ~1!

is assumed, whereNi are the numbers of corresponding ion
Since Coulombic forces do not allow a critical point of d
composition into charged phases in our conceptual sys
we will discuss only the liquid-vapor critical point.

At the beginning we analyze some general properties
charge fluctuations in a molten salt and their change at
proaching the liquid-vapor critical point.

Near the liquid-vapor critical point due to strong dens
fluctuations the system becomes spatially inhomogene
The charge contributions to the free energy are general
~see details in@18#!:

d f ch5E drW8E drW9E drW1•••E drWpKp~rW8,rW9urW1 , . . . ,rWp!

3de~rW1!•••de~rWp!, ~2!

wherede(rW) is a deviation of dielectric permittivity from its
equilibrium value,Kp is the kernel function, determine
from the Poisson equation. In the so-called local approxim
tion, when the contributions generated by the nonlinear te
(¹W de)(¹W df) of the Poisson equation for the potential incr
mentdf are ignored,d f ch is equal to

d f ch'E drWE drW8
^dr~rW !dr~rW8!&

eurW2rW8u

1

11dẽ~rW !
, ~3!

wheredẽ(rW)5de/e. As a result,d f ch is approximated by the
expression

d f ch5d f ch
(eq)1

d f ch
(eq)

V E drWS 1

11dẽ~rW !
21D , ~4!

whered f ch
(eq) is the charge contribution to the free energy

away from the critical point. In the simplest casef ch
(eq) can be

approximated by the Debye-Huckel~DH! law

bd f ch
(eq)52

1

12p
Gc

3 , ~5!

in which

G5
a

r s
,1

is the inverse screening length amplitude.
Further, it is very essential that the fluctuations of diele

tric permittivity are mainly caused by the density fluctu
tions, which are connected with the order parameterh(rW)
according toh(rW)5@n(rW)2nc#/nc , wherenc is the critical
value of density. Thus, the following relation between flu
tuations of density and dielectric permittivity exists:

e→e~rW !5e„11l1h~rW !1l2h2~rW !1•••…, ~6!
06150
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where

lk5
nc

k

ec

]ke

]nkU
n5nc

, ~7!

e5e(n) is the equilibrium value for dielectric permittivity.
Thus the differenceHch5d f ch2d f ch

(eq) can be represente
in the form

Hch'E drW (
n51

`
1

n
an

(pol)hn~rW !, ~8!

where

a1
(pol)52l1 , a2

(pol)52l21l1
2 ,

a3
(pol)52l312l1l22l1

3 , ~9!

a4
(pol)52l412l3l11l2

223l2l1
21l1

4 , . . . . ~10!

In fact after neglecting the terms of ordern.4, this gives an
addition to the primary LGH of the system:

H (0)@h#5E drWF1

2
a2

(0)h~rW !21
1

2
b2

(0)@¹W h~rW !#2

1
1

4
a4

(0)h~rW !4G . ~11!

Note that as long as expression~4!, which accounts for
polarizational effects, is used the polarizational contribut
to a4 is negative. It follows that~a! the dielectrical permit-
tivity is a monotonic function of the density,~b! the Coulom-
bic potential is a convex function of the dielectric permitti
ity, and ~c! the excess free energy for ionic systems
negative. This becomes quite clear if we chooseh5(e
2ec)/ec as the order parameter. The inclusion of Eq.~4! to
the effective LGH leads to the diminishing of the value
a4, thus reducing the Ginzburg number.

The results obtained above serve as the background
the analysis of the Ginzburg number in molten salt.

II. EFFECTIVE LANDAU-GINZBURG HAMILTONIAN
OF A SYSTEM

According to Eqs.~8!–~11! the effective LGH of molten
salt NaCl takes the structure

bHe f f@h~rW !#5E drWS b2

2
(¹W [h~rW !] 21 (

m51

4
am

m
hm~rW !D ,

~12!

where

am5am
(0)1am

(pol) ~13!

and

b25b2
(0) . ~14!
6-2
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CRITICAL BEHAVIOR OF IONIC LIQUIDS PHYSICAL REVIEW E65 061506
The coefficientsa2
(0) anda4

(0) are connected with the de
rivatives of pressure with respect to density by the relatio

a2
(0)5

]P

]n UT , a4
(0)5

]3P

]n3U
T

, ~15!

in which P includes the contributions of both short-ran
repulsive and Coulombic interactions. Almost all equatio
of state for the RPM lead to very small values of the coe
cientsai

(0) compared with those for molecular fluids at lea
by an order of magnitude@19,20#,

a2
(RPM)

a2
(LJ)

50.0120.1,
a4

(RPM)

a4
(LJ)

50.00120.01. ~16!

The only exception is the Debye-Huckel-Bjerrum mod
where the values of these coefficients are of the same o
as for molecular fluid. To calculateam

(pol) we use the formu-
las ~9! and ~10! with coefficientslk , determined with the
help of the canonical form for dielectric permittivity,

e21

e12
5l~11h!, ~17!

where

l5
4p

3
ae f frc* ~18!

andr* 5na3. Heren is the overall number density. In acco
dance with Eq.~17! the parameterl satisfies the inequality
l,1. The value ofe does not exceed 1.2~in vapor phase!
@8,21#.

The effective polarizabilityae f f is mainly formed by the
associated ionic pairs,

ae f f5
12D

6
d2

1

T*
, ~19!

where

D5
n1

n0
512

ndim

n0
~20!

is the degree of dissociation of the system,n0 is the number
density of the ions of a particular type, i.e.,n52n0 , T* is
the dimensionless temperatureT* 5kBT/(e2/a) and d5 l /a
is the dimensionless size of an ionic pair (d05el being its
dipole moment! and we putZ15Z251 for simplicity. The
conditionl,1 holds for all cases sincerc* /Tc* is sufficiently
small. In addition, if 9Tc* /2pd2rc* ,1, we can get the low
estimate forD at the critical point:

12
9Tc*

2pd2rc*
,Dc . ~21!

This estimate is natural for three-dimensional Coulom
systems, which apparently cannot undergo Kosterl
06150
s

s
-
t

,
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c
-

Thouless transition@22#, where D50 with r s divergence.
Thus the model~17! is acceptable from this point of view
even for the critical point located at high density (rc* /Tc*
.1). Note that asd grows, the degree of dissociationDc at
the critical point becomes closer to 1, which is pretty natu
from the physical point of view.

Further analysis of the polarizational induced terms in
LGH coefficients is sensible with respect to the coordina
(rc* ,Tc* ) of the critical point. To estimaterc andTc* , differ-
ent models for the EOS: DH, MSA, DH taking into dime
ization ~Bjerrum approach!, hard-core interactions, etc. wer
used~see@6,19,20#!. There are also the computer simulatio
of the phase diagram@22,23#. The values of paramete
rc* /Tc* obtained with the help of analytical methods a
small, 0.5,rc* /Tc* ,1 ~low critical density case!. Unlike
these analytical estimates recent computer calculations
the values 1,rc* /Tc* ,2 @23#. Basing on the estimate~21!
one can see that both these cases are consistent (l,1) with
the model. Note that model EOS such as MSA with differe
corrections @8# and numerical Monte Carlo calculation
@23,22# also show high degree of dissociation near critic
point. The expressions fora2

(pol) and a4
(pol) , which follow

from Eqs.~9! and ~17!, read as

a2
(pol)59

l2

~112l!2~12l!2
bcf ch

(eq) ,

a4
(pol)5

27

2

l4

~112l!4~12l!4
bcf ch

(eq) . ~22!

It follows from Eq. ~3! that polarizational contribution toa4
is negative, therefore the Ginzburg number decreases
taking account of polarization effects. Here the approxim
tion D'Dc was used. Using the dimensionless form of c
efficients of the LGH obtained in works@19,20# we calculate
the Ginzburg temperature for ionic fluid,

Gi5
9a4

2

8p2ã2
S a

bD 6

, ~23!

where

ã25 lim
t→0

a2

t
, t5

T2Tc

Tc
. ~24!

It is useful to rewrite Eq.~23! in the following form:

Gi5Gi0S 11
a4

(pol)

a4
(0) D 2

, ~25!

where Gi0 is the Ginzburg temperature without accounti
for the inhomogeneous polarization. Here we neglect
renormalization of the coefficientsã2 and b of the LGH. It
appears that in this approximation Gi slightly decreases
comparison with the initial value because the value ofl is
actually small (,0.1), sincee is close to 1.
6-3
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Below critical point, the system separates into liquid a
gaseous phases with different densities because of st
density fluctuations. These phases have different degree
dissociationD l iq andDgas, since thermodynamically the de
gree of dissociationD is a function ofT* and r* . At the
very critical pointD ( l iq )5D (gas) but belowD l iqÞDgas be-
cause ofr l iq* Þrg* . From the physical point of view one ca
expect the non-Ising-like asymptotics for the critical beha
ior only if density fluctuations strongly interact with the on
for charge. This interaction occurs only if the dipoles ex
since their number fluctuations are directly connected w
fluctuations of density. Thus the very fact that below critic
point D ( l iq )ÞD (gas) means that the number fluctuations
neutral pairs are strong and therefore the polarizational
fects should be taken into account. Since the density fluc
tions are strong the fluctuations of dipole number are str
too. That means that the fluctuations of charge numbers
also strong though mutually correlated due to the neutra
condition (dn152dn2). Indeed one could expect the pec
liarities for the critical behavior in ionic liquids if the degre
of dissociation strongly depends on the density near the c
cal point. From the standard thermodynamical equilibriu
consideration one can get@8#

2
12D

D2
5~11h!K~T* !exp@b~m1

(ex)1m2
(ex)2mdip

(ex)!#,

h5
r* 2rc*

rc*
, ~26!

wheremk
(ex) , k51,2, dip, are the excess chemical pote

tials for the corresponding type of particles,K(T) is the pa-
rameter of association-dissociation equilibrium. Therefore
consider the case of strong interaction between charge
density fluctuations, we should not neglect density dep
dence ofD near the critical point. It is clear that this depe
dence is very essential for the dielectric permittivity as h
been noted above. Here we use the linear approximation
such dependence:

D~r,t!5Dc1D1h1o~h!. ~27!

The estimate forD1 can be obtained from@8#, where we can
find that for different EOS 0,D1,10. The coefficients
a2

(pol) anda4
(pol) take the values

a2
(pol)59

~l2D1!2

~112l!2~12l!2
bcf ch

(eq) ,

a4
(pol)5

27

2

~l2D1!4

~112l!4~12l!4
bcf ch

(eq) . ~28!

Note that Eq.~28! corresponds to the linear approxim
tion for thee(h) dependence. The main result, the diminis
ing of the Ginzburg temperature, appears in this approxim
tion. Actually to constructa4

(pol) the terms up to fourth orde
in the h expansion fore(h) should be included. Sure th
explicit expressions fora2

(pol) and a4
(pol) become very com-
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plex and we will not give them here. These results are r
resented in Fig. 1. The key feature is the vanishing of
Ginzburg number at low dielectric permittivity values an
small screening length, while the value ofD1 is high enough
and D is close to 1. This region of parameters natura
corresponds to the state of the ionic liquid with a high deg
of dissociation at the critical point. Thus the account of p
larizational effects caused by the density fluctuations is v
essential for the analysis of asymptotical behavior of io
fluids, which was pointed in@24#. Using other model equa
tions of state such as the nonlimiting DH~NDH! approxima-
tion

F2Fid52
1

4p
@ ln~11G!2G1G2/2# ~29!

and MSA equation

F2Fid52
1

12p
@216G13G222~112G!3/2# ~30!

for constructing the LGH does not change the results sign
cantly. Namely, the difference between the results obtai
with the help of Eqs.~29! and~30! does not exceeds 5%. Th
DH approximation gives qualitatively the same results w
the difference in comparison with MSA and NDH EOS up
20% for Gc,0.3. It directly follows from Eq.~4!, which
shows that all polarizational corrections to the LGH are p
portional tobd f ch

(eq) . Since the DH EOS is valid only for low
density systems the usage of this EOS should be treate
mere illustrative.

For comparison we also give the results~see Fig. 2! for
the Ginzburg temperature calculated based on the Ons
formula for dielectric permittivity@35#:

e5
1

4 S 113x13A11
2x

3
1x2D , ~31!

where

FIG. 1. The dependence of the Ginzburg temperatureg
5Gi/Gi0 obtained with Eq.~17! on the degree of ionizationD and
D1 at a4

(0)50.01, d51, rc* /Tc* 50.5.
6-4
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x5
2p d2~12D2D1h!

3T*
.

As it follows from the obtained results for Gi, the steep i
crease of the degree of ionization with density may resul
significant lowering of Gi. For sufficiently great values
D15]D/]h the Ginzburg temperature may vanish. T
value ofD1 at which Gi50 increases if the locus paramet
rc* /Tc* decreases. This is quite natural, since for the Coulo
bic criticality to occur at low density a stronger density d
pendence for the degree of dissociation is needed.

In other words the Coulombic driven criticality is chara
terized by a small value of Gi caused by strong density
pendence of the degree of dissociation at the critical reg
The following scenarios are possible.

~1! D is continuous at the critical point bu
]D/]rur* 5r

c* ,T5T
c*

is very large. Note that due to very low

estimates forrc* in different mean-field approximations
even if D1.1 the value of]D/]rur* 5r

c*
.102. Here an

anomalously small value of Gi is observed but the criti
behavior is Ising-like. The polarizability of a system al
renormalizes the coefficientb. As has been noted above, th
Coulombic interactions prevent the spatial separation of
posite charges in a system. Therefore in quasilocal appr
mation the energy of a system with inhomogeneous dielec
permittivity should be higher than that for a homogeneo
one. In other words the polarization contribution increa
the value ofb. Thus we obtain the upper estimate for Gi.

~2! D is continuous at the critical point but its fluctuation
are essentialA^(dD)2&.^D&. In general,D is the sum of the
thermodynamical equilibrium partD (eq)(r* ,T* ) and the
fluctuation oneD ( f l ): D5D (eq)(r* ,T* )1D ( f l ). Therefore
the quantityD l iq2Dg includes the part orthogonal to th
density fluctuations and can be considered as a concu
order parameter, and a type of critical behavior distinct fr
Ising-like behavior can be expected. In particular, if the c
efficient of the gradient termc(]D)2 tends to zero the spatia
inhomogeneous phase with respect toD and possibly the
density is expected. The analog of such a phase in conde
matter is the excitonic drops@25#. In such a case the initia
liquid-vapor critical point can transform to a peculiar poi

FIG. 2. The dependence of the Ginzburg temperatureg
5Gi/Gi0 obtained with Eq.~31! on the degree of ionizationD and
D1 at a4

(0)50.01, d51, rc* /Tc* 50.5.
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similar to Lifshitz one@26#. Note that spatial inhomogeneit
of D in no way means the spatial separation of charges,
the charge-density wave phase. In addition, this scenari
closely connected with the metal-insulator transition@22#.

~3! The discontinuity of the density dependence ofD at
the mean-field critical point. According to the definition
the point of the second order phase transition the differe
between phases disappears. If there is a discontinuity inD at
the critical point, then it is not a second order phase tran
tion. This case needs detailed investigation.

Note that spatially modulated charge density and or
parameter waves was predicted in@27#. There quite a differ-
ent system was considered, namely, an electrolyte solutio
small concentration, with strong contact interaction betwe
neutral density fluctuations and the charged subsystem. H
ever a similar character of the intermode interaction can
be justified. Unlike this, the possibility of the appearance
the microhomogeneous state in molten salt NaCl is c
nected with realistic polarizational effects and independ
~uncorrelated! fluctuations of the degree of dissociation, n
leading to spatial separation of charges. The case of the
pulsive hard-core driven criticality@6,28# is characterized by
an insignificant change in Gi and a weak density depende
of the degree of dissociation.

III. CONDUCTIVITY OF THE ELECTROLYTES

Above it was shown that the peculiarities of the critic
behavior of ionic liquids are determined by the density d
pendenceD(r* ) of the degree of dissociation near the cri
cal point. The criticality of the conductivitys for highly
concentrated ionic mixtures and other electrolytes has b
studied much less compared with their equilibrium therm
dynamical properties@29,30#. The measurements of the con
ductivity for highly concentrated nonaqueous electroly
was presented in@30#.

It is well known ~see@31#! that for magnetic systems with
Ising symmetry for an order parameter and conjugated fi
the critical fluctuations lead to a singularity for the condu
tivity s similar to that of entropy on the critical isochor@31#:

s5sc1Art1Ast
12a1••• . ~32!

Formally the appearance of the singular term is easily
plained with the help of a thermodynamic relation betwe
the variations of the conductivity,ds, and the entropy,ds,

ds}2v rel~k50!
T

^ j2&
s2ds, ~33!

wherev rel is the characteristic relaxation rate for the co
ductivity, provided that it is nonzero at the critical point, i.e
no critical slowing down for the conductivity occurs. This
certainly true for scenario~1! above. Let us consider thi
case in more detail focusing on the connection of the sin
lar term for the conductivity with the behavior of the ke
parameterD. As is known, the conductivity of a system
determined by
6-5
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s5
b

3E0

`E
V
^ j ~r ,t !• j ~0,0!&drdt, ~34!

wherej (r ,t) is the electrical current density,

j ~r ,t !5erch~r ,t !v~r ,t !, ~35!

andrch(r ,t) is the density fluctuation of the charged comp
nent. The overall densityn is a sum of the density of the
charged component~free carriers! and the double density o
dipole pairs. The density fluctuation is the sum of the flu
tuations of these terms. To calculate Eq.~34! we can use the
arguments of@32#. Due to screening effect, the correlation
charge fluctuations separated by distancer .r s is negligible.
Due to this, in DH approximation we get

^rch~r ,t !rch~0,0!&'
1

4pbr s
2 S ]rch

]m D
T

e2r /r s

r
f ~vosc!,

~36!

where

]rch

]m
5nc

]D

]m
1Dc

]n

]m
. ~37!

n is the overall density andf is a function without singulari-
ties. We will not be interested in the time relaxation of cha
fluctuations here. The peculiarities of the critical behavior
the conductivity are mainly determined by the derivati
]rch /]m. Since the number of charges isN5N0D(r,T) the
singularity of]D/]muT5Tc

can be obtained from the analys

of ]N/]muTc
. The last is given by the thermodynamic ide

tity ~see, e.g.,@26#!

S ]N

]m D
T

5

S ]N

]T D
m

2

S ]S

]TD
m

2
CV

T

, CV5TS ]S

]TD
V,N

, T5Tc~11t!,

~38!

where in the vicinity of the critical pointCV5CV
(reg)

1CV
(sing) , where on the critical isochorCV

(sing)}t2a. The
value]N/]muTc

is nonzero because of the condition of io
ization equilibrium. Therefore the leading divergent terms
the denominator cancel out, but other less singular te
such ast12a do not. The later terms are responsible for t
singular terms in the conductivity.

DISCUSSION

In the present work the important role of polarization
effects in the critical behavior of ionic melts is demonstrat
It is established that if the key parameters of a system t
the valuesr s5125,D1.0.5, the coefficienta4 of the effec-
tive LGH reduces considerably or vanishes.

A similar situation is also characteristic for the critic
behavior of electrolyte solutions. There the charge fluct
tions of admixtured ions can essentially renormalize the
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efficient a4
(0) of the initial LGH for a solvent. At definite

concentrationx* of the electrolyte,a4(x* )50. For higher
concentrations the standard scenario of the critical beha
becomes inapplicable and additional investigations are n
essary. In connection with this we note the result obtain
experimentally in@33# for a ternary aqueous solution of so
dium bromide. A fluctuation region was observed at salt c
centration 0.17~mass fraction!, less than 1025. To interpret
this as the well as specific dip on the line of the lower critic
points, the conjecture about the existence of competing
croheterogeneous phases was put forward. In principle,
possible that at some concentration the line of the lower c
cal points may touch the virtual phase spinodal, who
branches are directed to lower temperatures. Then betw
the branches of the spinodal the state of the electrolyte s
tion should be heterogeneous according to the thermo
namic demands.

The main peculiarities of the critical behavior of molte
NaCl salt are determined by the density dependence of
degree of dissociationD and its fluctuations. When the fluc
tuations ofD are relatively small, the critical behavior of th
ionic liquid should be Ising-like. From the thermodynam
point of view it is supported by the fact that the system
characterized by two thermodynamic degrees of freed
@34#. The specificity of the system is displayed only in th
numerical value of the Ginzburg number: it is the lesser,
more the derivative]D/]ruT is.

If the fluctuations ofD become strong,A^(dD)2&.^D&,
the deviations from the Ising-like behavior can be consid
able. First of all, the system can demix on the parameterD.
In other words, the formation of drops with different valu
of D is possible. SinceD is a crucial parameter, the chang
of the type of the critical behavior seems to be probable.

It is not excluded that the phase diagram of molten s
NaCl near its liquid-vapor critical point will be more com
plex in comparison with that for a one-component liqu
with simple intermolecular interaction. In particular, the d
rivative ]3P/]n3uT5Tc

can be close to zero, which can lea

to a change of the type of the critical point, e.g., tricritic
behavior. However the vanishing ofa6 is impossible. The
behavior of conductivity can serve as an additional test of
type of the critical behavior. So the sharp change of the c
ductivity could testify the point of phase transition differe
from the second order.

Most crucial for the critical behavior is the dependence
a4 on the degree of dimerizationD of the system, which
directly influences the polarizability. The density of the ion
liquid is formed by the density of free charges and bound
states. The density of the nondissociated molecules~dipoles!
is determined by the thermodynamical parameters of
state of the system~e.g., temperature and specific volume!.
In particular, the results of Monte Carlo simulations indica
that the proximity of these two transitions could explain t
crossover phenomena in ionic fluids@22#. Note that our con-
sideration is based on mean-field treatment. Therefore a t
ough analysis of fluctuation effects is needed to determ
the type of critical behavior ifa450.
6-6
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APPENDIX: CANONICAL FORM OF THE
DIELECTRIC PERMITTIVITY

There exist many approaches to the problem of dielec
permittivity. Based on different assumptions they allow
describe with the most completeness only one or sev
characteristic contributions. Unfortunately applying to mod
representations too early lead to hard to control errors
particular, it can change the character of inequalities and
sentially influence the values of the density derivatives
dielectric permittivity. Therefore the discussion of the ge
eral structure of dielectric permittivity as well as the natu
of main contributions to it seems to be appropriate. By d
nition, dielectric permittivity for an isotropic medium@35# is
equal to

e2154p
P

E
, ~A1!

where P5uPu, P is the polarizability vector, andE is the
strength of the Maxwell electric field (PuuE). In general, we
should calculateP and E as functions of the external fiel
strengthE0. However for a specimen of spherical shape
connection betweenE andE0 is especially simple:

E5
3

e12
E0 . ~A2!

Therefore we can write

e21

e12
5

4p

3

P~E0!

E0
[

4p

3
nae f f . ~A3!

Since the effective polarizabilityae f f is a characteristic of a
medium, but not of the shape of the specimen, Eq.~A3!,
connectinge andae f f , is of general character. The left sid
of Eq. ~AA3! is always less than unity, so the inequality

4p

3
nae f f,1

should hold well.
To make a further conclusion aboutae f f ande, we rewrite

the formula~A3! in the form

e21

e12
5

4p

3

^D&01 1
3 ^D2&0E0

VE0
, ~A4!

whereD is the dipole moment of a system,V is its volume,
and the angular brackets designate the average over the
librium Gibbs distribution. Note that the matter within th
spherical example is homogeneously polarized. In gene
the dipole moment has the structure
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D5D01âE0 , ~A5!

whereD0 is the dipole moment of the isolated system andâ

is its polarizability. Following Fisher@36# â can be repre-
sented in a form

â5(
i 51

N

(
k51,2

â1
(k)~r i !

1 (
1< i , j <N

(
k1 ,k251,2

â2
k1 ,k2~r i ,r j !1•••, ~A6!

whereâ1
(k)(r i) is the tensor of one-particle polarizability fo

the i th ion of typek, â2
(k1 ,k2)(r i ,r j ) is the tensor of irreduc-

ible two-particle polarizability fori th and j th ions of types
k1 andk2, correspondingly, and so on. A similar expansion
characteristic for the dipole moment:

D05 (
1< i , j <N

(
k1 ,k251,2

d2
(k1 ,k2)

~r i ,r j !1•••. ~A7!

Note that within such an approach the central problem is
calculation of irreducible contributions of different orders
â andD but not the problem of the acting field@35#. From
symmetry reasons it follows that

^â1
(k)~r i !&05a1

(k) Î , ~A8!

^â2
(k1 ,k2)

~r i ,r j !&05
1

3
^Spâ2

(k1 ,k2)
~r i ,r j !&0Î , k51,2,

~A9!

where the angular brackets^•••&0 designate the averagin
over the equilibrium distribution function and we suppo
that one-ion polarizability is a scalar. The contributions
higher order polarizabilities are relatively small and will b
ignored further. SincêD0&050 the averagêD&050 can be
approximated by the expression

^D&05nFa11a21
z

12
~a111a2212a12!G ,

~A10!

wherez is the coordination number and, for example,a11

5Spâ2
(1,1) is the binary polarizability of two positive ions

which are nearest neighbors (r 12'a). Taking into account
that the main contribution toâ2

(1,1) is caused by the dipole
interactions, we can get the characteristic inequality

a11<
a1

2

a3
<

1

8
a1 , ~A11!

sincea1;(a/2)3. Therefore we conclude that the contrib
tion of the binary polarizability in Eq.~A10! cannot exceed13
of that from the contribution of one-particle ones.

To calculate^D2& at smallE0 we use the following as-
sumptions:~1! ^D2&0'^D0

2&0; ~2! the dipole moments of ions
6-7
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are strongly correlated only within the region whose size
the average is equal tor s ; ~3! the characteristic dipole mo
ment for this region has order of the dipole momentd0 for
isolated molecule NaCl. As a result we can write

^D2&0'V
d0

2

r s
3

. ~A12!

All these estimates allow us to conclude that

ae f f'a11a21
1

3

d0
2

kBT S a

r s
D 3

. ~A13!

The valuesa1 anda2 can be approximated by the polari
abilities of Ne and Ar. Using forr s the estimate obtained
above in such a way, we get

a21a1!
d0

2

kBT S a

r s
D 3

. ~A14!

Hence the estimate of the dielectric permittivity and its d
rivatives with respect to density can be obtained with
help of formulas of Lorentz-Lorenz type:
.

J.

J.

hy

m

.

06150
n

-
e

e21

e12
5

4p

3
n

d0
2

kBT S a

r s
D 3

. ~A15!

The specific form of the relation between dielectric perm
tivity and the effective polarizability is especially importa
for the calculation of the derivatives]ke/]nk. From this
point of view the formula of Lorentz-Lorenz type is obtaine
from first principles and should be considered as a physic
grounded result. If the dissociation is not complete the f
mula ~AA15! takes the form

e21

e12
5

4p

3
n

d0
2

kBT F12D

2
1DS a

r s
D 3G . ~A16!

The last term in Eq.~AA16! is essential only in the close
vicinity of the critical point. In other situations its influenc
is negligible. Then

e21

e12
5

2p

3
n

d0
2

kBT
~12D!. ~A17!
h.

er,

.
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