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Critical behavior of ionic liquids
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The renormalization of the Landau-Ginzburg Hamiltonian for a system with Coulombic interactions caused
by spatially inhomogeneous polarizational effects is discussed. It is shown that for ionic liquids with a strong
dependence of the degree of dissociation on density, the nonclassical fluctuation region is significantly nar-
rowed. The essential role of the association of ions is noted.
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INTRODUCTION cludes dilute solutions of electrolytes, such as aqueous elec-
trolytes (H,O+ NaCl etc) [13,14], and quasibinary solutions
Critical phenomena in fluids with nondispersive Coulom-[12]. Here the admixture of ions changes the parameters of
bic interactions have attracted much attention in the last dethe critical point of a pure solvent. Thus the critical behavior
cade owing to a diversity of experimental resuitee[1—3)). of a pure solvent is perturbed by the Coulombic subsystem

The variety of systems studied experimentally can be divide(ﬁ’f ions. The critical beh_aVIor of these_ systems may EXh.'b'.t a
into two groups. crossover from mean-field to Ising-like asymptotics within

Pure ionic fluids such as molten salts NaCl. KCI. etc the temperature interval of an experiment. In particular, ex-
form the first group. The liquid-vapor critical point of these perimental data for some solutions were fitted with a mean-

. . " _4 . .
systems is located at very high temperaturgs<(10® K).  field exponential law up te~10""[3], i.e., the fluctuation
This makes the experiments very difficult. From this point of €910N iS much less in comparison with that for simple lig-

; 2 . . . iy i ~0.1-1).
view the ionic(quasj binary mixtures with low critical tem-  UidS (G=0 , _
peratures T.=300 K) of decomposition used in the experi- 10 Process such data, the different assumptiorjd3n16

ments by Pitzer and co-workers are more suitdle,4,5. and [17] were considered. These affected the conclusions

The basic model for these systems is the restricted primitiv&P0ut the existence of the crossover in such systems. The
model (RPM). The latter is the system of equal number of results of[17] show the nonclassical behavior through the

positive and negative charges, immersed in a structureled§mperature interval without any crossover. [[15’1.@ the
solvent of dielectric permittivitye. Various theoretical ap- experimental data were fitted by a classical equation of state

proximations and numerical simulations predict the quuid-(E(IJS'18 . h h ing for the fl .
vapor critical point at very low dimensionless temperatures n [18] It was shown that accounting for the fluctuations
and densitie§6—8]. The nature of critical fluctuations in this of dlelect.nc permittivity of a solvent.|s very important for
model has not been studied much. The main difficulty here igonstructing the_proper LGH and Glnzburg criteria for the
the interaction between number density and charge fluctuz’i"lr?"’.IIySIS of the influence of the Cpulomb|c fubsystem ?n
tions. critical beh_aV|or of a solvent. In part|cu_lar, the square roofc
The renormalization-group analysis of this problem base oncentration dependence _for the shift of the critical point
on the theoretical field analog of the RPM taking into ac- olcgs (;or small concentrations observed [iM] was ex-
count hard-core repulsion was dond &j. It was shown that P allneh.. K . . he infl £ inh
the investigated model may exhibit either a first-order tran- n this work we investigate the Influence ot inhomoge-
sition or Ising-like critical behavior depending on the startingneous polanzatlo_nal effec_ts on the criticality of lonic I|qU|_ds.
values of the coefficients of the Landau-Ginzburg HamiI-The charge_—densny ‘FOUP"F‘Q In thgs_e_systems arises owing to
tonian (LGH). According to the study of Ref9] these two the fluctuations of dielectric permittivity caused by the fluc-

types are formed due to the existence of a tricritical surfacéua.tions. of dgnsity. The part of th_e djelectric permittivity of
in the space of the coefficients of the Hamiltonian. But the!onic fluid which depends on density is formed mainly by the

estimate for the width of the fluctuational region was notPolarizability of ionic cores and neutral ionic pairs. Taking

given. In addition, the value of the coefficient in t#é term account of the local dependence of this part of dielectric

is chosen without any physical grounds, although as Wagermittivity leads to fluctuations of local electrostatic energy
noted all the coefficients ab",n<22 in thé LGH obtained ™M the regions with characteristic size of the density-density
are negative ' correlation length. These charge fluctuations effectively

The possibility of the tricritical nature of observed pecu- renormalize the coefficients of the LGH of a system. In prin-

liarities was also discussed|i,10]. For such a conjecture to ciple, the ngorous_solunon of the RPM should mclud_e these
be valid the additional scale competitive with the correlationeﬁeqs' However in the absence .Of the exact splqun, the
length of an order parameter must exi&l. For example, in polarization .effects can be taken into account with the help
polymer blends the apparent second scale is the size of%{ the effective LGH.

molecule]11], which may lead to the crossover. The physical
meaning of its analog, if there exists one, for an electrolyte
solution is not cleaf12]. We consider a system of charged particles with charges

Analogous problems arise for the second group which inZ_, ,Z_, massesn, ,m_, and diameters,~a_=a. The

I. CHARGE FLUCTUATIONS IN A SYSTEM
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global electroneutrality condition where
ZN,—Z_N_=0 ) I’lléﬁke
A S , )
is assumed, wherd; are the numbers of corresponding ions. cdn n=n,

Since Coulombic forces do not allow a critical point of de-
composition into charged phases in our conceptual systera=e(n) is the equilibrium value for dielectric permittivity.
we will discuss only the liquid-vapor critical point. Thus the differencél.,= 6f.p— 5f(eq) can be represented
At the beginning we analyze some general properties oin the form
charge fluctuations in a molten salt and their change at ap-
proaching the liquid-vapor critical point. - R
Near the liquid-vapor critical point due to strong density Hch”J dfnzl ﬁaﬁpon 7"(r), (8
fluctuations the system becomes spatially inhomogeneous.
The charge contributions to the free energy are generalizeghere
(see details in18]):

oo

alPoh=—x;, alP=—x,+2\2
5fch=fdr fdr fdrl---fderp(l’ ,r |r1! ---!rp) a;(3p0|):_)\3+2)\1)\2_)\§1 (9)
X Be(ry)- - - de(ry), 2 alPol= — N 4+ 200 F A3 N L (10

wherede(r) is a deviation of dielectric permittivity from its |n fact after neglecting the terms of order-4, this gives an
equilibrium value, K, is the kernel function, determined addition to the primary LGH of the system:

from the Poisson equation. In the so-called local approxima-

tion, when the contributions generated by the nonlinear term HO ] = J il =

(V 8€)(V 5¢) of the Poisson equation for the potential incre-
mentd¢ are ignoredof ., is equal to

5t~ f fd _ (3p(r)dp(r")) 1~ ] 3

r—r'|  1+5e(r) Note that as long as expressitf), which accounts for
polarizational effects, is used the polarizational contribution
wherede(r) = del e. As a resultdf ., is approximated by the {0 a, is negative. It follows thata) the dielectrical permit-
expression tivity is a monotonic function of the densitgh) the Coulom-
bic potential is a convex function of the dielectric permittiv-
ity, and (c) the excess free energy for ionic systems is
———1/, 4 ; ; . .
1+ 8e(r) ) negative. This becomes quite cIear_|f we chooge (e
—€.)/ €. as the order parameter. The inclusion of E4).to
where 5t £? is the charge contribution to the free energy farthe effective LGH leads to the diminishing of the value of
away from the critical point. In the simplest caig? can be s, thus reducing the Ginzburg number.
approximated by the Debye-Hucké@H) law The res_ults obtaln_ed above serve as the background for
the analysis of the Ginzburg number in molten salt.

., 1 - -
a(°>n<r>2+§b‘2°’[v 7(r)J?

i alln(r)4|. (11)

Sfead
Sf op=of D+ \°/“ fdr

1
eq) _ 3
potiid=— Tomlc O Il. EFFECTIVE LANDAU-GINZBURG HAMILTONIAN
OF A SYSTEM

in which According to Egs(8)—(11) the effective LGH of molten

a salt NaCl takes the structure
r=—<i1

I's

N N b2 N N 4 a N
o | _ ﬁHeff[n<r>]=J dr(E(V[n(r)]erE — "0,
is the inverse screening length amplitude. m=1 M

Further, it is very essential that the fluctuations of dielec- (12
tric permittivity are mainly caused by the density fluctua-

i ) i - where
tions, which are connected with the order paramejér)
according ton(r)=[n(r)—n.]/n., wheren, is the critical ap=2al?+alPo (13
value of density. Thus, the following relation between fluc-
tuations of density and dielectric permittivity exists: and
e—e(F) = e(L+ A (1) + Ny p2(F)+ - - ), 6) b,=b{". (14)
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The coefficiental® anda{” are connected with the de-
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Thouless transitiorj22], where A=0 with rg divergence.

rivatives of pressure with respect to density by the relationsThus the model17) is acceptable from this point of view

P
(O —

T

in which P includes the contributions of both short-range

even for the critical point located at high density}(T;
>1). Note that asf grows, the degree of dissociatidn, at
the critical point becomes closer to 1, which is pretty natural
from the physical point of view.

Further analysis of the polarizational induced terms into

repulsive and Coulombic interactions. Almost all equations'-%H c*oefficients is sensible with respect to thi coordinates
of state for the RPM lead to very small values of the coeffi-(Pc - Tc) of the critical point. To estimatg. andT¢ , differ-
cientsa(®) compared with those for molecular fluids at least®Nt models for the EOS: DH, MSA, DH taking into dimer-

by an order of magnitudgl9,2Q,

a(RPM) a(RPM)

=0.01-0.1,

—0.001-0.01. (16)

a(ZLJ) agu)

The only exception is the Debye-Huckel-Bjerrum model,
where the values of these coefficients are of the same ord

as for molecular fluid. To calcula@ " we use the formu-
las (9) and (10) with coefficients\,, determined with the
help of the canonical form for dielectric permittivity,

1
6+—2=)\(1+ 7),

7

where

4 .
A= ?aeffpc

(18)
andp* =na®. Heren is the overall number density. In accor-
dance with Eq(17) the parametek satisfies the inequality
A<1. The value ofe does not exceed 1.@Gn vapor phasg
[8,21].

The effective polarizabilityw¢¢ is mainly formed by the
associated ionic pairs,

1-A > 1
Aetf= 5 é — (19
where
n n
A=t —q_ _dim (20)
No No

is the degree of dissociation of the systey,is the number
density of the ions of a particular type, i.@52ny, T* is
the dimensionless temperatufé =kgT/(e?/a) and §=I/a
is the dimensionless size of an ionic paityE el being its
dipole momentand we putZ, =Z_=1 for simplicity. The
condition\ <1 holds for all cases singe /T is sufficiently
small. In addition, if I*/276%°p* <1, we can get the low
estimate forA at the critical point:

B 9T}
2m8%p

<A.. (22

ization (Bjerrum approach hard-core interactions, etc. were
used(seg[6,19,20). There are also the computer simulations
of the phase diagrani22,23. The values of parameter
psITY obtained with the help of analytical methods are
small, 0.5<p3/T5<1 (low critical density case Unlike
these analytical estimates recent computer calculations give

the values X py/TE <2 [23]. Basing on the estimate1)

one can see that both these cases are consistent Y with

the model. Note that model EOS such as MSA with different
corrections [8] and numerical Monte Carlo calculations
[23,22 also show high degree of dissociation near critical
point. The expressions fa**” and a{*®", which follow
from Egs.(9) and(17), read as

2

alPoh —g flea,
(1+20)%2(1—\)2
27 A4
alpo)=— fG. (22

2 (1+20)%1-0)*

It follows from Eq. (3) that polarizational contribution ta,

is negative, therefore the Ginzburg number decreases after
taking account of polarization effects. Here the approxima-
tion A=A, was used. Using the dimensionless form of co-
efficients of the LGH obtained in work49,20 we calculate

the Ginzburg temperature for ionic fluid,

6

- 9a; (a 23
|: T~ | ]
877252 b
where
i a _T-Te 24
az_:noT' ™= (24)
It is useful to rewrite Eq(23) in the following form:
alpoh 2
. . 4
Gi=Gig| 1+ —| , (25
2(0)
4

where Gj is the Ginzburg temperature without accounting
for the inhomogeneous polarization. Here we neglect the
renormalization of the coefficients, andb of the LGH. It

appears that in this approximation Gi slightly decreases in

This estimate is natural for three-dimensional Coulombiccomparison with the initial value because the value\as
systems, which apparently cannot undergo Kosterlitzactually small €0.1), sincee is close to 1.
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Below critical point, the system separates into liquid and
gaseous phases with different densities because of stron
density fluctuations. These phases have different degrees ¢ RIS, ..:,0"
dissociationA |;, andA .5, since thermodynamically the de- ZZRERERSREAKS (7
gree of dissogiatiom gis a function of T* and p*. At the & *“‘WW&”QQ’Q‘O’ ..'
very critical pointA!®=A(939 but below A jiq # A g, be- 08 “\“\“““&”””.””’.
cause ofpji, # py - From the physical point of view one can ““‘ ‘ ”"””’.‘.

0.64

expect the non-Ising-like asymptotics for the critical behav- ‘ ‘W ”’ ’

cause bl Fom e prysiclpoit of v ot
o sy s oy s s \WM’&W’OM"
e e ey ety ) UAOMGOOOOAD

point AU'® £ A939 means that the number fluctuations of
neutral pairs are strong and therefore the polarizational ef-
fects should be taken into account. Since the density fluctua
tions are strong the fluctuations of dipole number are strong
too. That means that the fluctuations of charge numbers are FIG. 1. The dependence of the Ginzburg temperatgre
also strong though mutually correlated due to the neutrality= Gi/Gi; obtained with Eq(17) on the degree of ionizatioA and
condition (6n, = — én_). Indeed one could expect the pecu- A; atal?=0.01, §=1, p¥/T:=0.5.

liarities for the critical behavior in ionic liquids if the degree

of dissociation strongly depends on the density near the critiplex and we will not give them here. These results are rep-
cal point. From the standard thermodynamical equilibriumresented in Fig. 1. The key feature is the vanishing of the

< T 25>
e e O i e C it
et e e

consideration one can ggt] Ginzburg number at low dielectric permittivity values and
small screening length, while the value ®f is high enough
1-A . 0. (e9_  (e% and A is close to 1. This region of parameters naturally
2 A2 (1) KT )expd Bpy ™+ w27 — paip) 1, corresponds to the state of the ionic liquid with a high degree

of dissociation at the critical point. Thus the account of po-
. % larizational effects caused by the density fluctuations is very
= P Pec , (26) essential for the analysis of asymptotical behavior of ionic
Py fluids, which was pointed ifi24]. Using other model equa-
tions of state such as the nonlimiting INDH) approxima-
whereu(®”, k=+,—, dip, are the excess chemical poten-tion
tials for the corresponding type of particlé§(T) is the pa-
rameter of association-dissociation equilibrium. Therefore, to
consider the case of strong interaction between charge and
density fluctuations, we should not neglect density depen-
dence ofA near the critical point. It is clear that this depen- and MSA equation
dence is very essential for the dielectric permittivity as has
been noted above. Here we use the linear approximation for
such dependence:

1
F_Fid:_ﬂ[|n(1+r)—r+r2/2] (29

1 2 3/
F—Fig=— [ [2+6+3I?=2(1+2I)%] (30)

A(p,7)=Ac+A1n+o0(n). (27)  for constructing the LGH does not change the results signifi-
cantly. Namely, the difference between the results obtained
with the help of Egqs(29) and(30) does not exceeds 5%. The
DH approximation gives qualitatively the same results with
the difference in comparison with MSA and NDH EOS up to
(A—A,)? 20% for I';<0.3. It directly follows from Eq.(4), which
Cf((:eh@, shows that all polarizational corrections to the LGH are pro-
portional tog5f 89 . Since the DH EOS is valid only for low
4 density systems the usage of this EOS should be treated as
a(pol):2_7 (A—4y) B flea (29) mere illustrative.
4 2 (1+20)%1-0)*" ¢ ch - For comparison we also give the resulsge Fig. 2 for
the Ginzburg temperature calculated based on the Onsager
Note that Eq.(28) corresponds to the linear approxima- formula for dielectric permittivity| 35]:

tion for the e( ) dependence. The main result, the diminish-
1 2X
1+3x+3/1+ ?er2

The estimate for; can be obtained fronB], where we can
find that for different EOS €A;<10. The coefficients
at*°” andafP?" take the values

alPoh — g
(14+2N)?(1—\)?

ing of the Ginzburg temperature, appears in this approxima-
tion. Actually to construcagpo') the terms up to fourth order €2
in the » expansion fore(#n) should be included. Sure the

explicit expressions foal’®" anda{’° become very com- where

, (31)
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<SS

similar to Lifshitz one[26]. Note that spatial inhomogeneity
53

g B -:’::ff:'::f:"' of A in no way means the spatial separation of charges, i.e.,

B the charge-densit hase. In addition, thi io i
o3| NRAOREXRKRATAD, closely connected with the metal-insulator ransifad).
0.6 \\\“““““‘"".“”"’l’"" (3) The discontinuity of the density dependencefofat
0.4 \\““““‘ "‘“"“’ "" the mgan-field critical point. According to.t.he defini'tion at

‘ ‘ “‘ "‘ "' the point of the second order phase transition the difference

‘ ‘ “““"’ between phases disappears. If there is a discontinuity an
\&‘““““““9““““‘“&2&‘ the criticaF: point, thenp[i)t is not a second order phas;ey transi-
=04 07 tion. This case needs detailed investigation.

A, ST%8 0 A Note that spatially modulated charge density and order

parameter waves was predicted 27]. There quite a differ-

FIG. 2. The dependence of the Ginzburg temperatgre €ntsystem was considered, namely, an electrolyte solution of
=Gil/Gi, obtained with Eq(31) on the degree of ionizatioh and  small concentration, with strong contact interaction between
A, atal®=0.01, =1, p*/T*=05. neutral density fluctuations and the charged subsystem. How-
ever a similar character of the intermode interaction cannot

27 d%(1—A—Ayp) be jusfcified. Unlike this, the pos_sibility of the appearance of
_o7 17 ) the microhomogeneous state in molten salt NaCl is con-
3T* nected with realistic polarizational effects and independent

(uncorrelateg fluctuations of the degree of dissociation, not
As it follows from the obtained results for Gi, the steep in-€2ding to spatial separation of charges. The case of the re-
crease of the degree of ionization with density may result ifPU!Sive hard-core driven criticalitys, 28] is characterized by
significant lowering of Gi. For sufficiently great values of &N insignificant change in Gi and a weak density dependence
A,=dA/dn the Ginzburg temperature may vanish. The©f the degree of dissociation.
value of A; at which GO0 increases if the locus parameter
psITg decreases. This is quite natural, since for the Coulom-  [ll. CONDUCTIVITY OF THE ELECTROLYTES
bic criticality to occur at low density a stronger density de-
pendence for the degree of dissociation is needed.

\\!

X

Above it was shown that the peculiarities of the critical
behavior of ionic liquids are determined by the density de-

In other words the Coulombic driven criticality is charac- pendencel (p*) of the degree of dissociation near the criti-
terized by a small value of Gi caused by strong density Olecal point. The criticality of the conductivityr for highly

pendence of the degree of dissociation at the critical region: S
The following scenarios are possible concentrated ionic mixtures and other electrolytes has been

(1) A is continuous at the critical point but studied_ much Iess_ compared with their equilibrium thermo-

dAIap| «_x 11 is very large. Note that due to very low dyna_mjlcal propertle529,3(]. The measurements of the con-
c'' e ductivity for highly concentrated nonaqueous electrolytes

estimates forps in different mean-field approximations, \as presented if30].
even if A;=1 the value 0fﬂA/<9P|p*:p§:102- Here an It is well known (see[31]) that for magnetic systems with
anomalously small value of Gi is observed but the criticallsing symmetry for an order parameter and conjugated field,
behavior is Ising-like. The polarizability of a system also the critical fluctuations lead to a singularity for the conduc-
renormalizes the coefficiett As has been noted above, the tivity o similar to that of entropy on the critical isochi@1]:
Coulombic interactions prevent the spatial separation of op-
posite charges in a system. Therefore in quasilocal approxi- =0+ A THAT (32
mation the energy of a system with inhomogeneous dielectric
permittivity should be higher than that for a homogeneousFormally the appearance of the singular term is easily ex-
one. In other words the polarization contribution increaseglained with the help of a thermodynamic relation between
the value ofb. Thus we obtain the upper estimate for Gi.  the variations of the conductivityjo, and the entropyss,

(2) A is continuous at the critical point but its fluctuations
are essential/((6A)?)=(A). In general A is the sum of the T
thermodynamical equilibrium parh©?(p* T*) and the 8% — w,e(k=0) — 25, (33)
fluctuation oneA™: A=A (p* T*)+ A Therefore (1%
the quantityAjj;—A4 includes the part orthogonal to the
density fluctuations and can be considered as a concurremthere w,¢ iS the characteristic relaxation rate for the con-
order parameter, and a type of critical behavior distinct fromductivity, provided that it is nonzero at the critical point, i.e.,
Ising-like behavior can be expected. In particular, if the co-no critical slowing down for the conductivity occurs. This is
efficient of the gradient terma(dA)? tends to zero the spatial certainly true for scenarigl) above. Let us consider this
inhomogeneous phase with respectXoand possibly the case in more detail focusing on the connection of the singu-
density is expected. The analog of such a phase in condenskat term for the conductivity with the behavior of the key
matter is the excitonic drog®5]. In such a case the initial parameterA. As is known, the conductivity of a system is
liquid-vapor critical point can transform to a peculiar point determined by
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B(=( _ efficient a{”) of the initial LGH for a solvent. At definite
o= §fo jv(j(r,t)-1(0,0)>drdt, (34 concentratiorx, of the electrolyte;a,(x,)=0. For higher
concentrations the standard scenario of the critical behavior
wherej(r,t) is the electrical current density, becomes inapplicable and additional investigations are nec-
essary. In connection with this we note the result obtained
j(r,t)y=epep(r,t)v(r,t), (39 experimentally in[33] for a ternary agueous solution of so-

dium bromide. A fluctuation region was observed at salt con-
centration 0.17mass fractiop less than 10°. To interpret
this as the well as specific dip on the line of the lower critical
dipole pairs. The density fluctuation is the sum of the ﬂuc_points, the conjecture about the existence of compgting .m.i-
tuations of these terms. To calculate E8f) we can use the croheterogeneous phases was put forward. In principle, it is

arguments of32]. Due to screening effect, the correlation of possible that at some concentration the line of the lower criti-

charge fluctuations separated by distance . is negligible. ~ €al points may touch the virtual phase spinodal, whose
Due to this, in DH approximation we get branches are directed to lower temperatures. Then between

the branches of the spinodal the state of the electrolyte solu-
dpen| € "'s tion should be heterogeneous according to the thermody-
2\ f(wosd, namic demands.
AmpBrg\ oM

andp.p(r,t) is the density fluctuation of the charged compo-
nent. The overall density is a sum of the density of the
charged componerifree carriers and the double density of

(Per(rt)pen(0,0) ~ r
(36) The main peculiarities of the critical behavior of molten
NaCl salt are determined by the density dependence of the
where degree of dissociatioA and its fluctuations. When the fluc-
tuations ofA are relatively small, the critical behavior of the
%—n %"—A (9_n 37 ionic liquid should be Ising-like. From the thermodynamic
I Cou Cou’ point of view it is supported by the fact that the system is
characterized by two thermodynamic degrees of freedom
n is the overall denSity anflis a function without Singulari- [34] The Speciﬁciw of the System is d|3p|ayed on|y in the
ties. We will not be interested in the time relaxation of chargeymerical value of the Ginzburg number: it is the lesser, the
flr?ctuati(()jns he_re. The pe_CL:Iiacrjities of_ thg cgiticr;:l bgha_vior_ ofmore the derivativeIA/dp|y is.
the conductivity are mainly determined by the derivative ¢ o fctuations ofA become strongy((88)2)=(A),
(9.”‘3“/(9“.' Since the number of charg(_esl\tr— NoA(p.T) the . the deviations from the Ising-like behavio§ can b>e c<on>sider—
singularity OfaAmMT:Tc can be obtained from the analysis able. First of all, the system can demix on the paraméater

of dN/dulr . The last is given by the thermodynamic iden- | other words, the formation of drops with different values

tity (see, e.g.[26]) of A is possible. Sincé\ is a crucial parameter, the change
2 of the type of the critical behavior seems to be probable.
(ﬁ) It is not excluded that the phase diagram of molten salt
N al u aS NaCl near its liquid-vapor critical point will be more com-
(@)Tzag—cv' V:T(E)VN' T=T(1+7), plex in comparison with that for a one-component liquid
(&_T) T ’ with simple intermolecular interaction. In particular, the de-
y23

rivative 3°P/dn’|;_1_can be close to zero, which can lead
to a change of the type of the critical point, e.g., tricritical
where in the vicinity of the critical pointC\,:CSeg) behavior. However the vanishing @f is impossible. The
+C{"9 where on the critical isochoE{f"Pec7~* The  behavior of conductivity can serve as an additional test of the
value (9N/(9,u|TC is nonzero because of the condition of ion- type of the critical behavior. So the sharp change of the con-

ization equilibrium. Therefore the leading divergent terms inductivity could testify the point of phase transition different

the denominator cancel out, but other less singular term§om the second order. o
such asr'~® do not. The later terms are responsible for the ~Most crucial for the critical behavior is the dependence of

(38)

singular terms in the conductivity. a, on the degree of dimerizatioa of the system, which
directly influences the polarizability. The density of the ionic
DISCUSSION liquid is formed by the density of free charges and bounded

states. The density of the nondissociated molecidgmles

In the present work the important role of polarizationalis determined by the thermodynamical parameters of the
effects in the critical behavior of ionic melts is demonstrated state of the systenfe.g., temperature and specific volume
It is established that if the key parameters of a system taki particular, the results of Monte Carlo simulations indicate
the values ;=1-5,A,>0.5, the coefficient, of the effec- that the proximity of these two transitions could explain the
tive LGH reduces considerably or vanishes. crossover phenomena in ionic fluipa2]. Note that our con-

A similar situation is also characteristic for the critical sideration is based on mean-field treatment. Therefore a thor-
behavior of electrolyte solutions. There the charge fluctuaough analysis of fluctuation effects is needed to determine
tions of admixtured ions can essentially renormalize the cothe type of critical behavior i&,=0.
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APPENDIX: CANONICAL FORM OF THE ~ z (k)(r )
DIELECTRIC PERMITTIVITY e E,

There exist many approaches to the problem of dielectric ek
permittivity. Based on different assumptions they allow to + 2 > a, A (ry )+, (AB)
describe with the most completeness only one or several '
characteristic contributions. Unfortunately applying to model (K) . : -
representations too early lead to hard to control errors. hs{vherea (ri) is the terilsor of one-particle polarizability for
particular, it can change the character of inequalities and egheith ion of typek, ay"(r; 1)) is the tensor of irreduc-
sentially influence the values of the density derivatives ofible two-particle polarlzablhty fonth andjth ions of types
dielectric permittivity. Therefore the discussion of the gen-k; andk,, correspondingly, and so on. A similar expansion is
eral structure of dielectric permittivity as well as the naturecharacteristic for the dipole moment:
of main contributions to it seems to be appropriate. By defi-

nition, dielectric permittivity for an isotropic mediufi®5] is kq .k
P ty P 085] D= > S dl . (A7)
equal to 1=T7=N Ky L 1,2
-4 E Al Note that within such an approach the central problem is the
€ LTATE: (A1) calculation of irreducible contributions of different orders to

) . ) a andD but not the problem of the acting fie[@5]. From
where P=|P|, P is the polarizability vector, andt is the  symmetry reasons it follows that

strength of the Maxwell electric fieldP{|E). In general, we

should calculaté® and E as functions of the external field (a$P(r))o=alol, (A8)
strengthE,. However for a specimen of spherical shape the
connection betweeR andE, is especially simple: ~ et k) 1 ~ et k) R
(ay (g ,rj)>0=§<8pa2 PRl k=1.2,

3
(A2) (A9)

E= mEO'
where the angular brackets- - ), designate the averaging
over the equilibrium distribution function and we suppose
e—1 A4m P(EO) . that one-ion polarizability is a scalar. The contributions of

—Nagss- (A3) higher order polarizabilities are relatively small and will be
et2 3 E 3 ignored further. SincéDg)=0 the averagéD),=0 can be
approximated by the expression

Therefore we can write

Since the effective polarizability.¢; is a characteristic of a
medium, but not of the shape of the specimen, &BR), 2
connectinge and aq¢¢, IS of general character. The left side (DYo=n|la, +a_+ 1—2(a++ +a__+2a,_)],
of EqQ. (AA3) is always less than unity, so the inequality (A10)

_Trnaeff<1 wherez is the coordination number and, for exampte,
3 =Spal™ ™) is the binary polarizability of two positive ions,
should hold well. which are nearest neighbors;f~a). Taking into account
To make a further conclusion abaut;; ande, we rewrite  that the main contribution tas™*) is caused by the dipole

the formula(A3) in the form interactions, we can get the characteristic inequality
2
—1 47 (D)o+3(D?)E af 1
€ :_77( Yo+ 3(D%o o’ (A4) a++<—3s§a+, (Al11)
e+2 3 VE, a

whereD is the dipole moment of a systei,is its volume, sincea, ~(a/2)3. Therefore we conclude that the contribu-
and the angular brackets designate the average over the eqtién of the binary polarizability in EqtA10) cannot exceed
librium Gibbs distribution. Note that the matter within the of that from the contribution of one-particle ones.
spherical example is homogeneously polarized. In general, To calculate(D?) at smallE, we use the following as-
the dipole moment has the structure sumptions{1) (D?)o~(D3)o; (2) the dipole moments of ions
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are strongly correlated only within the region whose size on e—1 A4m dg 3
the average is equal 1q; (3) the characteristic dipole mo- =—5nN——
ment for this region has order of the dipole momdgtfor

isolated molecule NaCl. As a result we can write

a

Is

(A15)

The specific form of the relation between dielectric permit-

2 tivity and the effective polarizability is especially important

0

<D2>0“Vr_3- (A12)  for the calculation of the derivatives®e/dnk. From this

s point of view the formula of Lorentz-Lorenz type is obtained
All these estimates allow us to conclude that from first principles and should be considered as a physically
grounded result. If the dissociation is not complete the for-
1.d3/a\d mula (AA15) takes the form
aeff~a++a,+§kB—T r—s (Alg)
The val d b imated by the polari o1 _dm dofi-a(2) A16
e valuesae, anda_ can be approximated by the polariz- P ?nkB_T — o (Al6)

abilities of Ne and Ar. Using forg the estimate obtained
above in such a way, we get

The last term in Eq(AA16) is essential only in the close
vicinity of the critical point. In other situations its influence
is negligible. Then

a 3

Is

dg
kT

(Al14)

a_ta, <<

Hence the estimate of the dielectric permittivity and its de-

2

rivatives with respect to density can be obtained with the e-1 2w da _
——=—n—=(1-A) (A17)

help of formulas of Lorentz-Lorenz type: e+2 3 kgT

[1] K. S. Pitzer, Acc. Chem. Re&3, 333(1990. [20] W. Schroer and V. C. Weiss, J. Chem. Phi@9, 8504(1998.

[2] R. R. Singh and K. S. Pitzer, J. Chem. Ph92, 6775(1990. [21] Y. Levin and M. E. Fisher, Physica 225 164 (1996.
[3] K. C. Zhang, M. E. Briggs, R. W. Gammon, and J. M. H. [22] P. J. Camp and G. N. Patey, Phys. Re6(: 1063(1999.

Levelt Sengers, J. Chem. Phg¥, 8692(1992. [23] J. M. Cailllol, D. Levesque, and J. J. Weis, J. Chem. Ph§g,
[4] T. Narayanan and K. S. Pitzer, Phys. Rev. L&B, 3002 1565(1997).
(19949. [24] W. Ebeling and M. Grigo, Ann. PhysLeipzig) 37, 21 (1980.
[5] T. Narayanan and K. S. Pitzer, J. Chem. Ph{82 8118 [25] T. N. Rice, Solid State Phy82, 1 (1977.
(1995. [26] L. D. Landau and E. M. LifshitzStatistical PhysicsMoscow,
[6] M. E. Fisher, J. Stat. Phy35, 1 (1994). Nauka, 1978 Vol. 5, Pt. 1.
[7] G. Stell, Phys. Rev. A5, 7628(1992. [27] V. M. Nabutovskii, N. A. Nemov, and Yu. G. Peisakovich, Zh.
[8] B. Guillot and Y. Guissani, Mol. Phy®87, 37 (1996. Eksp. Teor. Fiz.79, 2196 (1980 [Sov. Phys. JETF2, 111
[9] N. V. Brilliantov, C. Bagnuls, and C. Bervillier, Phys. Lett. A (1980].
245, 274(1998. [28] K. S. Pitzer, J. Phys. Cherf9, 13 070(1995.
[10] G. Stell, J. Stat. Phyg8, 197 (1995. [29] D. R. Schreiber, M. Conceicano, P. de Lima, and K. S. Pitzer,
[11] D. W. Hair, E. K. Hobbie, A. I. Nakatani, and C. C. Han, J. J. Phys. Chenm91, 4087(1987.
Chem. Phys96, 9133(1992. [30] A. Oleinikova and M. Bonetti, Phys. Rev. Let83, 2985
[12] J. Jacob, A. Kumar, M. A. Anisimov, A. A. Povodyrev, and J. (1999.
V. Sengers, Phys. Rev. kB, 2188(1998. [31] A. Z. Patashinskii and V. L. Pokrovskizluctuation Theory of
[13] J. Bischoff and K. Pitzer, Am. J. Sc289, 217 (1989. Critical PhenomendPergamon, Oxford, 1979
[14] W. Marshall, J. Chem. Soc., Faraday Tra88. 1807 (1990. [32] R. A. Ferrel, Phys. Rev. LetR4, 1235(1970.
[15] K. S. Pitzer, J. Phys. Cherf0, 1502(1986. [33] M. A. Anisimov, J. Jacob, A. Kumar, V. A. Agayan, and J. V.
[16] K. S. Pitzer, J. L. Bischoff, and R. J. Rosenbauer, Chem. Phys.  Sengers, Phys. Rev. Le&5, 2336(2000.
Lett. 134, 60 (1987. [34] T. Poston and I. N. Stewar€atastrophe Theory and Its Ap-
[17] M. Yu. Belyakov, S. B. Kiselev, and J. C. Rainwater, J. Chem. plications, Surveys and Reference Works in MatliPi@man,
Phys.107, 3085(1997. London, 1978.
[18] V. L. Koulinskii, N. P. Malomuzh, and V. A. Tolpekin, Phys. [35] H. Frohlich, Theory of Dielectrics: Dielectric Constant and
Rev. E60, 6897(1999. Dielectric Loss(Clarendon Press, Oxford, 1958

[19] M. E. Fisher and B. P. Lee, Phys. Rev. Lét?, 3561(1996. [36] I. Fisher, unpublished lecture, Odessa University, 1978.

061506-8



